Evidence for an anomalous like-sign dimuon charge asymmetry at D0

Dmitri Tsybychev (Stony Brook University)

On Behalf of D0 Collaboration

Brookhaven Forum 2010

May 26, 2010

Universe Today

$$\frac{n_{\mathcal{B}}}{n_{\gamma}} = (6.2 \pm 0.2) \times 10^{-10}$$
 WMAP

- ~4% Matter
- Baryon number violation
- CP violation
- Deviation from equilibrium
 - A.D. Sakharov

- Current estimate from SM 10⁻²⁰
- 10 orders of magnitude difference

DØ Detector

- General purpose detector
- Excellent coverage of tracking and muon systems ($|\eta|$ <2)
- Excellent vertex resolution
- 2T Solenoid, muon system toroid

Reversal of Magnet Polarities

- Polarities of DØ solenoid and toroid are reversed regularly
- Trajectory of the negative particle becomes exactly the same as the trajectory of the positive particle with the reversed magnet polarity

 Analyzing 4 samples with different polarities (++, —, +-, -+) the difference in the reconstruction efficiency between positive and negative particles is minimized

Changing polarities is an important feature of DØ detector, which reduces significantly systematics in charge asymmetry measurements

Past Measurements

- Measurement of the Like-Sign Dimuon Charge Asymmetry in pp bar Collisions at √s= 1.8 TeV"
 - Not published, 1997
 - Influenced decisions made for Run II detector upgrade
- "Measurement of the CP-Violation Parameter of B⁰ Mixing and Decay with pp $\rightarrow \mu \ \mu \ X$ Data"

$$A_{SL} = -0.0092 \pm 0.0044 \pm 0.0032$$

- 1 fb⁻¹, Phys. Rev. D **74**, 092001 (2006)
- "Measurement of the Charge Asymmetry in Semileptonic B_s^0 Decays"
 - 1.3 fb⁻¹, Phys. Rev. Lett. 98, 151801 (2007)
- "Search for CP Violation in Semileptonic B_s⁰ Decays"
 - 5 fb⁻¹, arXiv.org:0904.3907

Dimuon charge asymmetry

• Dimuon charge asymmetry of semileptonic *B* decays:

$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

- N_b^{++} , N_b^{--} number of events with two b hadrons decaying semileptonically and producing two muons of the same charge
- One muon comes from direct semileptonic decay $b \to \mu^- X$
- Second muon comes from direct semileptonic decay after neutral B meson mixing: $B^0 \to \overline{B}{}^0 \to \mu^- X$

Semileptonic charge asymmetry

• A_{sl}^b is equal to the charge asymmetry of "wrong sign" semileptonic B decays:

$$a_{sl}^{b} \equiv \frac{\Gamma(\overline{B} \to \mu^{+} X) - \Gamma(B \to \mu^{-} X)}{\Gamma(\overline{B} \to \mu^{+} X) + \Gamma(B \to \mu^{-} X)} = A_{sl}^{b}$$

- See Y. Grossman, Y. Nir, G. Raz, PRL 97, 151801 (2006)
- "Right sign" decay is $B \rightarrow \mu^+ X$
- "Wrong sign" decays can happen only due to flavour oscillation in B_d and B_s
- Semileptonic charge asymmetry can be defined separately for B_d and B_s :

$$a_{sl}^{q} = \frac{\Gamma(\overline{B}_{q}^{0} \to \mu^{+}X) - \Gamma(\overline{B}_{q}^{0} \to \mu^{-}X)}{\Gamma(\overline{B}_{q}^{0} \to \mu^{+}X) + \Gamma(\overline{B}_{q}^{0} \to \mu^{-}X)}; \quad q = d, s$$

$A_{\rm sl}^b$ at the Tevatron

• Since both B_d and B_s are produced at the Tevatron, A_{sl}^b is a linear combination of a_{sl}^d and a_{sl}^s :

$$A_{sl}^b = (0.506 \pm 0.043)a_{sl}^d + (0.494 \pm 0.043)a_{sl}^s$$

- Need to know production fractions of B_d and B_s mesons at the Tevatron
- Measured by the CDF experiment
- Standard model predicts a very small value of A_{sl}^b :

$$A_{sl}^b = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

• using prediction of a_{sl}^d and a_{sl}^s from A. Lenz, U. Nierste, hep-ph/0612167

Analysis Strategy

- 1 Experimentally, we measure two quantities:
 - Like-sign dimuon charge asymmetry:

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

Inclusive muon charge asymmetry:

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-}$$

- N^{++} , N^{--} the number of events with two like-sign dimuons
- n^+ , n^- the number of muons with given charge
- Both A and a linearly depend on the charge asymmetry A_{sl}^b

$$a = k A_{sl}^b + a_{bkg}$$
$$A = K A_{sl}^b + A_{bkg}$$

- 2 Determine the background contributions A_{bkg} and a_{bkg}
- 3 Find the coefficients *K* and *k*
- 4 Exctract A_{sl}^{b}

Subtract Background to Extract $A^b_{\ m sl}$

$$a = k A_{sl}^b + a_{bkg}$$
$$A = K A_{sl}^b + A_{bkg}$$

- The same background processes contribute to both A_{bkg} and a_{bkg}
 - Kaon and pion decays $K^+ \rightarrow \mu^+ \nu$, $\pi^+ \rightarrow \mu^+ \nu$ or punch-through
 - proton punch-through
 - False track associated with muon track
 - Asymmetry of muon reconstruction
 - Measured directly in data, allows to reduce systematic uncertainty
- Therefore, the uncertainties of A_{bkg} and a_{bkg} are correlated
- We take advantage of the correlated background contributions, and obtain A_{sl}^b from the linear combination:

$$A' \equiv A - \alpha a$$

• Coefficient α is selected such that the total uncertainty of A^b_{sl} is minimized

Event selection

• Inclusive muon sample:

- Charged particle identified as a muon
- $1.5 < p_T < 25 \text{ GeV}$
- muon with $p_T < 4.2$ GeV must have $|p_7| > 6.4$ GeV
- $|\eta| < 2.2$
- Distance to primary vertex: <3 mm in axial plane; < 5 mm along the beam

Like-sign dimuon sample:

- Two muons of the same charge
- Both muons satisfy all above conditions
- Primary vertex is common for both muons
- $M(\mu\mu) > 2.8$ GeV to suppress events with two muons from the same B decay

Raw Asymmetries

- We measure:
 - From 1.495×10⁹ muons in the inclusive muon sample

$$a = \frac{n^+ - n^-}{n^+ + n^-} = (+0.955 \pm 0.003)\%$$

• 3.731×10⁶ events in the like-sign dimuon sample

Asymmetries in Background

$$a_{bkg} = f_k a_k + f_{\pi} a_{\pi} + f_p a_p + (1 - f_{bkg}) \delta$$

$$A_{bkg} = F_k A_k + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{bkg}) \Delta$$

- f_K , f_n , and f_p are the fractions of kaons, pions and proton identified as a muon in the inclusive muon sample
 - a_K , a_n , and a_p are the charge asymmetries of kaon, pion, and proton tracks in the inclusive muon sample
- ō is the charge asymmetry of muon reconstruction
- $\bullet \quad \mathbf{f}_{bkg} = f_K + f_\Pi + f_P$
- F_K , F_n , and F_p are the fractions of kaons, pions and protons identified as a muon in the like-sign dimuon sample
 - A_K , A_n , and A_p are the charge asymmetries of kaon, pion, and proton tracks
- d is the charge asymmetry of muon reconstruction
- $\bullet \quad \mathbf{F_{bkg}} = \mathbf{F_K} + \mathbf{F_{\pi}} + \mathbf{F_{p}}$

Kaon Detection Asymmetry

- The largest background asymmetry, and the largest background contribution comes from the charge asymmetry of kaon track identified as a muon (a_K, A_K)
- Interaction cross section of K^+ and K^- with the detector material is different, especially for kaons with low momentum

• e.g., for
$$p(K) = 1$$
 GeV: $\sigma(K^-d) \approx 80$ mb $\sigma(K^+d) \approx 33$ mb

- It happens because the reaction $K^-N \rightarrow Y\pi$ has no K^+N analogue
 - Detector made of matter
 - K⁺ meson travels further than K⁻ in the detector, and has more chance to decay to a muon or to punch-through
- Therefore, the asymmetries a_K , A_K should be positive
- All other background asymmetries are found to be about ten times less

Measurement of Kaon Asymmetry

Define sources of kaons:

$$K^{*0} \to K^{+}\pi^{-}$$

$$\phi(1020) \to K^{+}K^{-}$$

- Require that the kaon is identified as a muon
- Jution Jacon positive and Jacon Jaco

Measurement of Kaon Asymmetry

- Results from $K^{*0} \rightarrow K^{+} \pi^{-}$ and $\phi(1020) \rightarrow K^{+} K^{-}$ agree well
 - For the difference between two channels: $\chi^2/\text{dof} = 5.4/5$
- We combine the two channels together:

Measurement of f_K , F_K

- Fractions f_K , F_K are measured using the decays $K^{*0} \rightarrow K^{+}\pi^{-}$ and selected in the inclusive muon and like-sign dimuon samples respectively;
- Kaon is required to be identified as a muon;
 We measure fractions f_{K*0}, F_{K*0}

We measure fraction
$$f_{K} = \frac{N(K_{S})}{N(K^{*+})} f_{K^{*0}}$$

$$F_{K} = \frac{N(K_{S})}{N(K^{*+})} F_{K^{*0}}$$

Use simulation to confirm pion reconstruction ε is the same for K*+ and K*0 if K+/K_S is reconstructed

Measurement of a_{π} , a_p

• The asymmetries a_{π} , a_{p} are measured using the decays $K_{S} \rightarrow \Pi^{+} \Pi^{-}$ and $\Lambda \rightarrow p \Pi^{-}$ respectively

	a_K	a_{π}	a_p
Data	$(+5.51 \pm 0.11)\%$	$+(0.25\pm0.10)\%$	$(+2.3 \pm 2.8)\%$

- These are all determined in "muon" p_T bins
- Asymmetries in the dimuon sample are derived taking into account the slightly different muon p_T distributions

$$F_K A_K = \sum_{i=0}^4 F_{\mu}^i F_K^i a_K^i$$

Measurement of f_{π} , F_{π} , f_p , F_p

• We obtain f_{Π} , F_{Π} as:

$$f_{\pi} = f_{K} \frac{P(\pi \to \mu)}{P(K \to \mu)} \frac{n_{\pi}}{n_{K}}$$
$$F_{\pi} = F_{K} \frac{P(\pi \to \mu)}{P(K \to \mu)} \frac{N_{\pi}}{N_{K}}$$

- We use as an input:
 - Measured fractions f_K , F_K
 - Ratio of probabilities for charged pion and kaon to be identified as a muon $P(\Pi \rightarrow \mu)/P(K \rightarrow \mu)$ is measured using decays $K_S \rightarrow \Pi^+ \Pi^-$ and $\phi(1020) \rightarrow K^+ K^-$;
 - Ratio of multiplicities of pion and kaon n_{π}/n_{K} (N_{π}/N_{K}) in QCD events taken from simulation
 - Systematic uncertainty due to multiplicities: 4%
 - The decay $/ \rightarrow p\pi$ is used to identify a proton and to measure $P(p \rightarrow \mu)/P(K \rightarrow \mu)$, f_p , F_p

Summary of Background Composition

$$f_{bkg} = f_k + f_\pi + f_p$$

 We get the following background fractions in the inclusive muon events:

	$(1-f_{bkg})$	f_{K}	f_{π}	f_p
MC	(59.0±0.3)%	(14.5±0.2)%	(25.7±0.3)%	(0.8±0.1)%
Data	(58.1±1.4)%	(15.5±0.2)%	(25.9±1.4)%	(0.7±0.2)%

- Uncertainties for both data and simulation are statistical
- Simulation fractions are given as a cross-check only, and are not used in the analysis
- Good agreement between data and simulation within the systematic uncertainties assigned

Muon Reconstruction Asymmetry

- We measure the muon reconstruction asymmetry using J/ψ→μμ events
- Average asymmetries
 δ and Δ are:

$$\delta = (-0.076 \pm 0.028)\%$$

$$\Delta = (-0.068 \pm 0.023)\%$$

To be compared with:

$$a = (+0.955 \pm 0.003)\%$$

$$A = (+0.564 \pm 0.053)\%$$

Such small values of charge reconstruction asymmetries are a direct consequence of the regular reversal of magnet polarities, during data taking

Summary of Background Contribution

$$\begin{split} a_{bkg} &= f_k a_k + f_\pi a_\pi + f_p a_p + (1 - f_{bkg}) \delta \\ A_{bkg} &= F_k A_k + F_\pi A_\pi + F_p A_p + (2 - F_{bkg}) \Delta \end{split}$$

	$f_K a_K (\%)$ or $F_K A_K (\%)$	$ \int_{\pi} a_{\pi} (\%) $ or $F_{\pi} A_{\pi} (\%)$	$f_p a_p (\%)$ or $F_p A_p (\%)$	$(1-f_{bkg})\delta$ (%) or $(2-F_{bkg})\Delta$ (%)	$rac{a_{ m bkg}}{{ m or}A_{ m bkg}}$
Inclusive	0.854±0.018	0.095±0.027	0.012±0.022	-0.044±0.016	0.917±0.045
Dimuon	0.828±0.035	0.095±0.025	0.000±0.021	-0.108±0.037	0.815±0.070

- All uncertainties are statistical
- Notice that background contribution is similar for inclusive muon and dimuon sample: $A_{bkq} \approx a_{bkq}$

Signal Contribution

 After subtracting the background contribution from the "raw" asymmetries a and A, the remaining residual asymmetries are proportional to A^b_{sl}

$$k A_{sl}^b = a - a_{bkg}$$

$$K A_{sl}^b = A - A_{bkg}$$

- Many decays of b- and c-quark contribute to inclusive muon and like-sign dimuon sample
 - dilute the values of a and A by contributing to the denominator of these asymmetries
 - Only oscillation term produces asymmetry
- k,K determined from the simulation

Process	Weight
$T_1 b \to \mu^- X$	$w_1 \equiv 1$.
$T_{1a} \underline{b} \rightarrow \mu^- X \text{ (nos)}$	$w_{1a} = (1 - \chi_0)w_1$
T_{1b} $\bar{b} \rightarrow b \rightarrow \mu^- X \text{ (osc)}$	$w_{1b} = \chi_0 w_1$
$T_2 b \to c \to \mu^+ X$	$w_2 = 0.113 \pm 0.010$
T_{2a} $b \rightarrow c \rightarrow \mu^+ X \text{ (nos)}$	$w_{2a} = (1 - \chi_0)w_2$
T_{2b} $\bar{b} \rightarrow b \rightarrow c \rightarrow \mu^+ X \text{ (osc)}$	$w_{2b} = \chi_0 w_2$
T_3 $b \to c\bar{c}q$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_3 = 0.062 \pm 0.006$
$T_4 \eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+ \mu^-$	$w_4 = 0.021 \pm 0.001$
T_5 $b\bar{b}c\bar{c}$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_5 = 0.013 \pm 0.002$
T_6 $c\bar{c}$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_6 = 0.660 \pm 0.077$

$$k = 0.041 \pm 0.003$$

 $K = 0.342 \pm 0.023$

Closure Test

- The value of a is mainly determined by the background asymmetry a_{bkq}
 - A_{sl}^b in is suppressed by $k = 0.041 \pm 0.003$
- Construct a_{bkg} from f_K , f_{π} , f_p , a_K , a_{π} , a_p and δ , verify how well does it describe the observed asymmetry a
- We compare a and a_{bkg} as a function of muon p_T
- We get $\chi^2/\text{dof} = 2.4/5$ for the difference between these two distributions

Excellent agreement between the expected and observed values of a, including a p_T dependence

Bringing everything together

 Using all results on background and signal contribution we get two separate measurements of A^b_{sl} from inclusive and like-sign dimuon samples:

$$A_{sl}^b = (+0.94 \pm 1.12 \text{ (stat)} \pm 2.14 \text{ (syst)})\%$$
 (from inclusive)
 $A_{sl}^b = (-0.736 \pm 0.266 \text{ (stat)} \pm 0.305 \text{ (syst)})\%$ (from dimuon)

- Uncertainties of the first result are much larger, because of a small coefficient $k = 0.041\pm0.003$
- Dominant contribution into the systematic uncertainty comes from the measurement of f_K and F_K fractions

Combination of Measurements

- Single muon asymmetry completely dominated by background, and background systematic is dominant
- Obtain the final result using the linear combination:

$$A' \equiv A - \alpha a = (K - \alpha k)A_{sl}^b + (A_{bkg} - \alpha a_{bkg})$$

Since $A_{bkg} \approx a_{bkg}$ and the uncertainties of these quantities are correlated, we can expect the cancellation of background uncertainties in A' for $\alpha \approx 1$ The signal asymmetry A^b_{sl} does not cancel in A' for $\alpha \approx 1$ because k<<K

α

Final result

• From $A' = A - \alpha$ a we obtain a value of A_{sl}^b :

$$A_{sl}^b = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$$

To be compared with the SM prediction:

$$A_{sl}^b(SM) = (-0.023^{+0.005}_{-0.006})\%$$

- This result differs from the SM prediction by \sim 3.2 σ
- Previous measurement

$$A_{SL} = (-0.92 \pm 0.44 \pm 0.32)\%$$

Consistency Tests

- We modify selection criteria, or use a part of sample to test the stability of result
- 16 tests in total are performed
- Very big variation of raw asymmetry A (up to 140%) due to variation of background, but Ab_{sl} remains stable

Developed method is stable and gives consistent result after modifying selection criteria in a wide range

Dependence on Dimuon Mass

- We compare the expected and observed dimuon charge asymmetry for different masses of µ µ pair
- The expected and observed asymmetries agree well for $A_{sl}^b = -0.00957$
- No singularity in the M(μμ) shape supports B physics as the source of anomalous asymmetry

20

30

40

 $M(\mu\mu)$ [GeV]

50

10

D0 Combination of a_{sl}^s

Obtained result
 agrees well
 with other D0
 measurements of
 a^s_{sl} and world
 average of a^d_{sl}

 D0 combination of all measurements of semileptonic charge asymmetry

$$a_{sl}^s = (-1.46 \pm 0.75)\%$$

After subtracting $a_{sl}^d = -0.0047 \pm 0.0046$ measured at B factories

$$a_{sl}^{s}(SM) = (+0.0021 \pm 0.0006)\%$$

Comparison with other measurements

- Obtained value of a_{sl}^s can be translated into the measurement of the CP violating phase ϕ_s and $\Delta\Gamma_s$
- This constraint is in excellent agreement with an independent measurement of ϕ_s and $\Delta\Gamma_s$ in $B_s \rightarrow J/\psi \phi$ decay

$$A_{SL}^{s} = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} = \left| \frac{\Gamma_{12}}{M_{12}} \right| \sin \varphi_{s} = \frac{\Delta \Gamma_{s}}{\Delta m_{s}} \cdot \tan \varphi_{s}$$

Summary and Conclusions

New measurement of A^b_{sl} is performed

$$A_{sl}^b = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$$

- Submitted to arXiv:1005.2757
- Almost all relevant quantities are obtained from data with minimal input from simulation
 - Closure test shows good agreement between expected and observed asymmetries in the inclusive muon sample
- This asymmetry is not consistent with the SM prediction at a 3.2σ level
 - We observe that the number of produced particles of matter (negative muons) is larger than the number of produced particles of antimatter
 - Dominant uncertainty is statistical precision can be improved with more luminosity!
- May see sign of new physics at LHC soon!

Kaon Fractions f_K , F_K

- Fractions f_K , F_K are measured using the decays $K^{*0} \rightarrow K^+ \pi^-$
- We measure $f_{K^{*0}}$, $F_{K^{*0}}$
- We find f_{K^*0}/f_K using the similar decay $K^{*+} \rightarrow K_S \Pi^-$
 - In this decay we measure f_{K^*+}/f_{K^s} and convert it into f_{K^*0}/f_K

Statistical and Systematic Uncertainties

Source	A ^b sl inclusive <u>muon</u>	A ^b sl dimuon	$A^b_{ m sl}$ combined	_
A or a (stat)	0.00066	0.00159	0.00179	
f_K or F_K (stat)	0.00222	0.00123	0.00140	es S
$P(\pi \to \mu)/P(K \to \mu)$	0.00234	0.00038	0.00010	uncertainties
$P(p \to \mu)/P(K \to \mu)$	0.00301	0.00044	0.00011	/
A_K	0.00410	0.00076	0.00061	
A_{π}	0.00699	0.00086	0.00035	
A_p	0.00478	0.00054	0.00001	nar
δ or Δ	0.00405	0.00105	0.00077	Jominant
$f_K \text{ or } F_K \text{ (syst)}$	0.02137	0.00300	0.00128	۵
π, K, p multiplicity	0.00098	0.00025	0.00018	_
c_b or C_b	0.00080	0.00046	0.00068	
Total statistical	0.01118	0.00266	0.00251	
Total systematic	0.02140	0.00305	0.00146	
Total	0.02415	0.00405	0.00290	

2010/05/26 D. Tsybychev 35

Outlook

Both CDF and DØ observe 1-2 sigma deviations in ϕ_s from SM predictions

Combined result 2.12σ w.r.t SM expectation

Interesting to see how these effects evolve with more data

Updated analyses from both CDF and D0 expected soon

Presented at Moriond 2010

